Vision System for Virtual Agents.
Environment Model and Perception’s Architecture for Multi-Agent Based Simulation in Virtual Environments.
Application to a Pedestrian Simulation

Nicolas GAUD, Stéphane GALLAND and Abder KOUKAM

Multiagent Systems and Applications Group, Systems and Transportation Laboratory (SeT), University of Technology of Belfort-Montbéliard (UTBM), F-90 000 Belfort, France
{nicolas.gaud,stephane.galland,abder.koukam}@utbm.fr

VIA Workshop - november 4-5 2004
Vision System for Virtual Agents.
VIA Workshop - november 4-5 2004

Contents

Context & Objectives
Definitions
Related work
Virtual Environment
Synthetic Vision
Environnement model
Visual perception
Results
Future works
Conclusion

Context & Objectives

Definitions

Related work

Environnement model

Visual perception

Results

Future works

Conclusion
Context

Multiagent Systems and Applications Group, Systems and Transportation Laboratory (SeT).

Research Axis :
- Multiagent Systems Specification and Design.
- Heuristical approaches for distributed problem solving. Applications to Transportation’s problems.

We are integrated into labellized european projects :
- SURE-EESD : a time-oriented model for Sustainable Urban REgeneration
- AgentLink : Specification methodology and verification project (AgentLink II, MSEAS).
Objectives

Main Objective
Immerse a multiagent platform into a Virtual Environment (especially urban environment).

Constraints: Real-time, Believability

First step:
- Assure a real time perception for each agent in the simulation.
- Integrate into virtual world, the information needed by agents to develop high level behaviors: semantics.
What is an Agent?

Definition (inspired from [Ferber, 1995] et [Bouzid, 2001])

An agent is a physical or virtual entity which verifies the following properties:

- autonomy: act without human intervention and possesses resources of its own;
- communicative: communicate directly with other agents;
- responsiveness: answer to outside events;
- behavior: own one or more objectives whose behaviours tends to satisfy them;
- situation: perceive partially the environment via its sensors, eventually build a partial representation (i.e memory), and change its configuration by acting above locally via its effectors.
Virtual Environment : a short review

Informed Environment [Farenc, Boulic and Thalmann, 1999]

- The scene is decomposed as a set of environmental entities called ENV.
- An ENV represents a surface or a volume and consists of semantical informations, a list of objects located inside the area and a list of associated actions or behaviors.

Perception is simulated by a direct extraction from environment's database.
Virtual Environment : a short review

Informed Environment [Farenc, Boulic and Thalmann, 1999]

- The scene is decomposed as a set of environmental entities called ENV.
- An ENV represents a surface or a volume and consists of semantical informations, a list of objects located inside the area and a list of associated actions or behaviors.

Virtual Urban Environment Modeling System [Donikian, 1997]
Environment is decomposed into three levels: geometrical, topological and semantical. Dedicated originally to driving simulation in urban environment and then adapt to pedestrian simulation by THOMAS [Thomas, 1999].

Perception is simulated by a direct extraction from environment's database.
Synthetic Vision : a short review

First synthetic vision system

[Renault, M-Thalmann, Thalmann, 1990]

- All objects in the frustum are projected on a 2d bitmap according to the viewer’s point of view,
- The distance from the eye to all the points of the objects are extracted from the graphical card’s Z-Buffer\(^1\),
- The objects’ identifiers are stored inside the back-buffer of the graphical card.

\(^1\) also called depth-buffer
Synthetic Vision : a short review

First synthetic vision system

[Renault, M-Thalmann, Thalmann, 1990]

- All objects in the frustum are projected on a 2d bitmap according to the viewer’s point of view,
- The distance from the eye to all the points of the objects are extracted from the graphical card’s Z-Buffer\(^1\),
- The objects’ identifiers are stored inside the back-buffer of the graphical card.

Artificial Fishes [Tu and Terzopoulos, 1994]

Synthetic vision system using ray casting.

\(^1\) also called depth-buffer
Synthetic Vision : a short review

Noser et al. [Noser and Thalmann, 1995]

Actors perceive their environments from small false-coloring images rendered from a point of view by the computer hardware.
Synthetic Vision: a short review

Noser et al. [Noser and Thalmann, 1995]
Actors perceive their environments from small false-coloring images rendered from a point of view by the computer hardware.

Wen et al. [Wen, Mehdi and Gough, 2002]

- Use an octree to assure the hierarchical scene decomposition: only AABB are stored.
- Reduce synthetic vision to a simple Frustum culling (Tree Traversing) and local area Z-Buffering.
Related Work : Summary

Synthetic vision needs some adaptations to respect Virtual Reality constraints :

- **Real time constraint**: Wen et al. approach :
 ⇒ **Problems**: Incompatibility with simulation involving a great number of autonomous agent.

- **Our approach is inspired from** [Wen, Mehdi and Gough, 2002] :
 Adapt the environment structures to assure fast visual perception for all agent in the simulation.
Environment Model

- Virtual Environment
- Synthetic Vision
- 3D database (scenegraph)
- Metric environment (2D)
- Topological environment
- Layer between MAS and 3D softwares
- Inside the MAS software
Metric Environment

Environmental entities classification

Static: immovable e.g. building, road, environment’s agent...

Dynamic: mobile e.g. pedestrians, vehicles...
Vision System for Virtual Agents.
VIA Workshop - November 4-5 2004

Vision process

- View Direction
- Point of view

AABB: Axis Aligned Bounding Box

Traverse the tree and test for clipping

Front, Overlap, Back

AABB

- Traverse the tree and test for clipping
- AABB: Axis Aligned Bounding Box
Experimental results

Mean time of Perception : \textbf{0.85 ms}

![Perception Time vs Number of Agent Graph](chart.png)
Future works

- Develop a pedestrian and/or vehicle’s simulation based on groups of agents defined from common goals and on the agents’ mutual perceptions.

- Model a environment dedicated to multiagent-based simulation in virtual environments and integrating different levels of simulation: micro, meso, macro.

Forward objective:
Simulate large scale Virtual Environment integrating a great number of agents (n>20 000).
Conclusion

Achieved objectives: The first step to assure the immersion of a MABS into a Virtual Environment (VE): Assure a fast visual perception for a great number of "micro-agent" in a VE.

Contributions:

▶ Synthetic Vision is compatible with real time simulation implying a great number of agents.
▶ this environment model could be see as a layer allowing to immerse a standard multiagent platform\(^2\) in a virtual world.

\(^2\) e.g. MadKit
Questions

Thanks for your attention

If you have some questions?
Bibliographie

N. Farenc, R. Boulic and D. Thalmann.
An informed environment dedicated to the simulation of virtual humans in urban context.

Z. Wen, Q.H. Mehdi, N.E. Gough
A New Animation Approach for visualizing Intelligent Agent Behaviours in Virtual Environment.
Bibliographie II

S. Donikian.
VUEMS: a Virtual Urban Environment Modeling System.